Current Language
×
Chinese (Simplified, PRC)

选择语言:

切换菜单
Current Language
×
Chinese (Simplified, PRC)

选择语言:

联系我们

与泰克代表实时聊天。 工作时间:上午 9:00 - 下午 5:00(太平洋标准时间)。

电话

致电我们

工作时间:上午9:00-下午5:00(太平洋标准时间)

下载

下载手册、产品技术资料、软件等:

下载类型
型号或关键字

反馈

Measuring MOSFET Gate Charge with the 4200A-SCS Parameter Analyzer


Introduction

Power MOSFETs are used in a variety of applications and can be used as high-speed switching. The switching speed of the device is affected by internal capacitances, which is typically specified in data sheets in terms of Ciss and Coss, which are derived from the input gate and drain capacitance, Cgs and Cgd. In addition to specifying the capacitance, the gate charge (Qgs and Qgd) can also be used to assess the switching performance of the MOSFET.

One method of measuring the gate charge of a MOSFET gate charge is described in the JEDEC JESD24-2 standard, "Gate Charge Test Method". In this method, a gate current is forced while the gate to source voltage is measured as a function of time. From the resulting gate voltage waveform, the gate-source charge (Qgs), gate-drain charge (Qgd), and gate charge (Qg) are derived.

The 4200A-SCS Parameter Analyzer supports making MOSFET gate charge measurements using two source measure unit (SMU) instruments and the gate charge measurement test that's included on the system. This test is one of many included in the extensive Test Library provided in the 4200A-SCS Clarius+ Software Suite. This application note describes how to measure MOSFET gate charge based on the JEDEC Gate Charge Test Method using the 4200A-SCS Parameter Analyzer.

MOSFET Gate Charge Measurement Overview

In the Gate Charge Method, a fixed test current (Ig) is forced into the gate of a MOS, transistor and the measured gate source voltage (Vgs) is plotted against the charge flowing into the gate. A fixed voltage bias is applied to the drain terminal. Figure 1 shows the gate voltage vs. gate charge of a power MOSFET.

The gate charge (Q) is derived from the forced gate current and time, (Igdt). The gate-source charge (Qgs) is the charge required, as shown in Figure 1, to reach the beginning of the plateau region where the voltage (Vgs) is almost constant. The plateau (or Miller) voltage (Vpl) is defined, according to the JEDEC standard, as the gate-source voltage when dVgs/dt is at a minimum. The voltage plateau is the region when the transistor is switching from the OFF state to the ON state. The gate charge required to complete this switching—the charge needed to switch the device from the beginning of the plateau region to the end—is defined as gate-drain charge (Qgd) and is known as the Miller charge. The gate charge (Qg) is the charge from the origin to the point where the gatesource voltage (Vgs) is equal to a specified maximum (VgsMax).

 
MOSFET gate charge measurement graph showing voltage vs. gate charge of a power MOSFET
Figure 1. Typical gate voltage vs. gate charge of power MOSFET
 

S1 is the slope of the line segment from the origin to the first plateau point. S2 is the slope of the line segment from the last plateau point to the specified maximum gate voltage (VgsMax). The slopes are used to calculate Qgs and Qgd, as specified in the JESD24-2 standard.

Figure 2 shows typical gate and drain waveforms as a function of time. As current is forced to the gate, Vgs increases until it reaches the threshold voltage. At this point, the drain current (Id) begins to flow. When Cgs is charged up at time t1, Id stays constant and the drain voltage (Vd) decreases. Vgs remains constant until it reaches the end of the plateau. Once Cgd is charged at time t2, the gate-source voltage (Vgs) starts to increase again until it reaches the specified maximum gate voltage (VgsMax).

 
Graph showing gate and drain waveforms as a function of time
Figure 2. Vgs, Vd, and Id vs. time of MOSFET
 

Using the 4200A-SCS for MOSFET Gate Charge Measurements

The 4200A-SCS measures gate charge of a power MOSFET using two SMU instruments. Figure 3 illustrates the basic circuit diagram of the gate charge test. The Force HI terminal of one SMU (SMU1) is connected to the gate terminal of the MOSFET and forces the gate current (Ig) and measures the gate-source voltage (Vgs) as a function of time. A second SMU (SMU2) applies a fixed voltage (Vds) to the drain at a specified current compliance (Ib). The maximum compliance current of the 4200-SMU is 0.1 A; the maximum compliance of the 4210-SMU is 1 A.

During the gate charge test, the gate voltage increases and turns ON the transistor. During this transition in the plateau region, the drain SMU (SMU2) switches from voltage control to the current control mode, because the current exceeds the specified compliance level. The software returns the drain current transients and drain voltage during the transition from the OFF state to the ON state.

The MOSFET's source terminal is connected to the Force LO terminal or GNDU of the 4200A-SCS chassis.

 
MOSFET gate charge test configuration using two source measure unit (SMU) instruments
Figure 3. Gate charge test configuration using two SMU instruments.
 

Configuring the Clarius+ Software for MOSFET Gate Charge Measurements

The Gate Charge test is located in both the Test and Project Libraries, which can be found in the Select pane by searching for the phrase "gate charge". Once the test is found in the Test Library, it can be added to a project by selecting and adding it to the project tree. This test was created from the gate_charge user module in the GateCharge user library.

Enter Input Parameters

Before test execution, you need to enter the input test parameters in the Configure pane of the Clarius Software (Figure 4). The input parameters will vary depending on the device and which model of SMU is used.

 
Setting up a MOSFET gate charge test in the configuration view of the Keithley Clarius software
Figure 4. The gate charge test in the Configure View.
 

Descriptions of the input parameters are listed in Table 1. First, enter the SMU numbers that are connected to the gate (gateSMU) and drain (drainSMU) of the MOSFET. The source terminal should always be connected to the GNDU, or Force LO.

The magnitude of the current forced to the gate by the gateSMU, is the gateCurrent (Ig) parameter. The drain voltage (Vds) is the bias voltage applied to the drain and drainLimitI is the compliance current of the drain SMU.

The Coffset parameter is used for correcting for the offset capacitance and is described in the following paragraphs.

Table 1. Input Parameters for gate_charge user module.

Input Parameter Range of Values Default Values Description
gateSMU SMU1-SMU9 SMU1 The SMU number connected to the gate terminal
drainSMU SMU1-SMU9 SMU2 The SMU number connected to the drain terminal
source GNDU GNDU The source terminal is always connected to the Force LO terminal on GNDU
Vds ± 200 V 10 V The magnitude of the drain bias voltage of the drain SMU
drainLimitI 4200-SMU: 0.1A
4210-SMU: 1 A
0.1 A Current compliance of the drain SMU
gateCurrent ± 1E-5 A 1e-7 A The magnitude of the gate current of the gate SMU
VgsMax ± 200V 10 V The maximum voltage level of the gate SMU.
timeOut 0 to 300 s 60 s The number of seconds prior to a time out.
measDrain 1 (yes) or 0 (no) 1 Return measured drain current
Coffset 0 or Ceff 0 Run test with open circuit and then enter Ceff value returned to the Sheet

 

Correct for Offset Capacitances

Depending on the cabling and connections of the measurement system, the offset capacitance can be in the single picofarads to hundreds of picofarads ranges. These capacitances can be corrected by executing the gate_charge user module with an open circuit, obtaining the offset capacitance, then entering the offset capacitance value in the software for compensation. Here's how to perform these steps:

  1. Measure the offset capacitance. Set up the test parameters including the input gate current as though the device were connected to the SMUs. (Increase the VgsMax just for the Ceff measurement.) Prior to executing the test, lift the probes or remove the device from the test fixture. Execute the Gate Charge test with an open circuit.
  2. Obtain the offset capacitance. After the test is executed, the measured offset capacitance of the system is calculated and appears in the Ceff column in the Sheet. Ceff is derived from the maximum gate voltage, gate current, and time.
    Because an open circuit is measured during this step, a Test Status Value of -9 or -12 may appear in the Sheet after the test is executed. This is because no device is measured so there is no plateau region. However, the Ceff value is correct and can be entered as the Coffset in the Configure view.
  3. Enter the measured offset capacitance and execute. Enter the measured offset capacitance, Ceff, for Coffset in the Configure view. By default, Coffset is 0 F. Compensation will be made for the offset capacitance in subsequent readings.

Execute the Test

Once the input parameters have been entered, execute the test by selecting Run at the top of the screen. As the test is running, the gate charge waveform will update in real time in the graph in the Analyze view and the calculated output parameters will appear in the Sheet.

View Output Parameters

After the test is completed, several parameters are returned to the Sheet. Table 2 lists descriptions of these parameters.

Table 2. Output parameters for gate_charge user module

 
Output Parameter Description
gate_charge Test status values - see Table 3 for descriptions
timeArray Measured time (seconds)
VgArray Measured gate-source voltage (volts)
VgCharge Measured gate charge (coulombs)
VdArray Measured drain voltage (volts)
IdArray Measured drain current (amps)
Slope Dynamic slope (dVg/dt) of gate voltage
Ceff Ratio of gate charge to maximum gate voltage
Vpl Plateau or Miller voltage (volts)
T1 Timestamp where the plateau area begins (seconds)
T2 Timestamp where the plateau area ends (seconds)
Qgs Gate charge from the origin to the first inflection point, or the voltage plateau (coulombs)
Qgd Gate charge between the two inflection points in the gate charge curve (coulombs)
Qg Gate charge from the origin to VgsMax (coulombs)
 

 

Graphing the Results

The resulting gate-source voltage can be plotted as a function of the gate charge or the drain current, and drain voltage can be plotted as a function of time. Figure 5 is a typical gate voltage waveform generated by the 4200A-SCS

 
MOSFET gate voltage waveform generated by the Keithley 4200A-SCS parameter analyzer
Figure 5. Typical gate voltage waveform generated by the 4200A-SCS.
 

In addition to plotting Vgs, Vds, and Id can also be plotted as a function of the MOSFET gate charge or time. Figure 6 shows the graph in the Analyze view of the Clarius Software showing all three parameters plotted as a function of the gate charge. In this case, the voltage is shown on the Y1 axis and the current is plotted on the Y2 axis.

 
Vgs, Vds, and Id as a function of MOSFET gate charge over time
Figure 6. Vgs, Vds, and Id as a function of gate charge.
 

Check the Test Status

Each time the test is executed, a Test Status Value is returned to the first column in the Sheet, named "gate_charge". Table 3 lists the returned Test Status Values in the "gate_charge" column and their corresponding descriptions and notes.

Table 3. Test Status Values

Test Status Description Notes
1 No errors Test successful.
-1 Gate SMU is not present Specify correct SMU.
-2 Drain SMU is not present Specify correct SMU.
-3 VgsMax > 200 V Verifies gate voltage is less than 200V. Reduce gate voltage.
-4 Drain current limit exceeds 1 A (4210-SMU)
Drain current limits exceeds 0.1 A (4200-SMU)
Verifies drain current is less than 1 A (or 0.1A for medium power SMU). Reduce drain current limit (drainLimitI).
-5 Power limit exceeded Current should be < 0.1A if V >20V. Decrease drain current limit (drainLimitI) or drain voltage (Vds).
-6 Error check on input conditions. Limits timeOut to 200 s. Specify timeOut to <200 s.
-7 Test time exceeds specified time out (timeOut). Increase timeOut. Maximum is 200 s. Try increasing gateCurrent to charge up device faster.
-8 Number of iterations/measurements >10000. Increase gate current (gateCurrent).
-9 Number of iterations/measurements <5 Decrease gate current (gateCurrent). Check device, test set-up and for correct SMU.
This error can be ignored if it occurs while measuring an open circuit for offset correction. The Ceff value is still valid.
-10 Number of points from origin to first plateau point is <10 Decrease gate current (gateCurrent)
-11 Error calculating slope, S1. Correlation factor < 0.9. Curve from origin to first plateau point is not linear. Check device and test set-up.
-12 Error calculating slope, S2. Correlation factor <0.9. Curve from last plateau point to VgsMax is not linear. Check device and test set-up. If VgCharge or VdArray appear high,try reducing gateCurrent and repeat test.
This error can be ignored if it occurs while measuring an open circuit for offset correction. The Ceff value is still valid.
-13 Vds > 200 V Decrease drain voltage.
-14 gateCurrent > 10 µA Decrease gate current (Ig).

 

Conclusion

MOSFET gate charge measurements on transistors can be easily made using the Keithley 4200A-SCS Parameter Analyzer. Using two SMU instruments connected to the gate and drain of the device, the Clarius Software easily derives the gate charge waveforms.

Find more valuable resources at TEK.COM

资源

fig-18
宣传册

简化 MOSFET 和 MOSCAP 器件表征电子指南

工程师和研究人员不断面临着改进现有或研发新的半导体技术的挑战。本电子指南回答了一些关于提高半导体测量质量的常见问题,重点关注 DC I-V 和电容-电压 (C-V) 测量。

smu
博客

低功率范围内的 MOSFET 特性分析

交流-直流电源已完全融入了我们的日常生活。详细了解交流-直流电源的作用以及它们如何成为我们所有电子产品的核心。

SMU Group
博客

如何测量 MOSFET I-V 曲线

吉时利的源测量单元 (SMU) 是 MOSFET I-V 特性测试的核心仪器。了解如何使用吉时利 SMU 测量 MOSFET I-V 曲线。

Noisey gate drive
博客

有效测量碳化硅 (SiC) MOSFET 信号

碳化硅 (SiC) MOSFET 越来越多地应用于电动汽车、太阳能和备用电源系统等行业。本博客介绍了如何有效测量碳化硅 MOSFET 信号。

Mosfet 栅极电荷常见问题

MOSFET 的漏源导通电阻是多少?

MOSFET 开关器件在导通和关断状态下工作。在“导通”状态下,开关的阻抗理论上为零,无论有多少电流流过开关,开关都不会消耗功率。在“关断”状态下,开关的阻抗理论上为无穷大,因此没有电流流动,也不会消耗功率。

漏源导通电阻 (RDS(on)) 是 MOSFET 处于导通状态时漏极和源极之间的有效电阻。当施加特定的栅源电压 (VGS) 时,会出现这种情况。通常,随着 VGS 的增大,导通电阻会减小。MOSFET 的导通电阻越小越好,因为低电阻会减少不必要的功率耗散,从而提高器件的能效。

如何在曲线追踪仪上测试 MOSFET 的漏源导通电阻?

回答:漏源导通电阻 - RDS(on)

什么是漏源导通电阻?

漏源导通电阻 (RDS(on)) 是指当施加特定的栅源电压 (VGS) 将器件偏移至导通状态时,MOSFET 的漏极和源极之间的电阻。随着 VGS 的增加,导通电阻通常会降低。测量过程在器件的欧姆区(即线性区)进行。一般来说,MOSFET 导通电阻越低越好。

追踪这种电阻的方法之一是使用曲线追踪仪。在曲线追踪仪上,由“集电极电源”驱动漏极,由“阶梯信号发生器”驱动栅极。有关如何使用曲线追踪仪测试 MOSFET 漏源导通电阻的分步说明,请参见下文。有关如何使用示波器或 SMU 测量 MOSFET 导通电阻的说明,请参见我们的“什么是 MOSFET 的漏源导通电阻?”常见问题。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。在指定的 VDS 下,当 ID 小于或等于指定的最大值时,则符合技术规格。

如何在曲线追踪仪上测试 MOSFET 的漏源导通电阻:

1. 在控件下,设置:

            A:最大峰值电压(伏),设置为高于指定 VDS 的最低值

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:集电极电源极性,对于 N 沟道,设置为 (+DC),对于 P 沟道,设置为 (-DC)

            D:水平电压/格,显示第 5 和第 10 个水平格之间的 VDS

            E:垂直电流/格,显示第 5 和第 10 个垂直格之间的 ID

            F:步数,设置为最小值(零)

            G:阶梯信号发生器,设置为电压

            H:阶梯信号发生器极性,施加正向偏移(对于 N 沟道,为 +,对于 P 沟道,为 -)

            I:阶梯/偏移放大,设置为指定 VGS 的 50% 左右

            J:脉冲,设置为“长”       

            K:配置为(基极/阶梯信号发生器,发射极/共用)

            L:可变集电极电源,设置至最低百分比(完整 ccw)

            M:DotCursor,设置为 ON

2. 为 MOSFET 供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 VDS

3. 与数据表技术规格进行比较:

            A:检查 VDS/ID 是否小于或等于指定的最大值

泰克曲线追踪仪已停产。我们设计了更高效、更精确的方法和解决方案,以更紧凑的形状因子来支持曲线追踪功能。其中一种解决方案是使用双通道 SMU 或两个单通道 SMU 和软件来控制偏压阶梯信号的生成和相对漏源压降。要了解更多信息,请参阅“什么是 MOSFET 的漏源导通电阻?”常见问题。

如何计算 MOSFET 的跨导?

跨导是验证 MOSFET 在电力电子设计中的性能的关键测试。它能确保 MOSFET 正常工作,并在电压增益是电路设计的关键规格时,帮助工程师选择最佳的 MOSFET。这反过来又使公司能够更快地将功率半导体器件推向市场,同时最大限度地减少现场故障。

跨导是施加恒定漏源电压时,漏极电流 (ID) 与栅源电压 (VGS) 的比值。电流与电压之比通常称为增益。跨导是与 MOSET 的阈值电压 (VTH) 紧密相关的关键参数,两者都与栅极沟道的大小有关。通过 I-V 测量得出 MOSFET 的跨导的公式如下:

gm = ΔID / ΔVGS

如何测量 MOSFET 的跨导?

第一种配置中显示的方法需要三个 源测量单元 (SMU),这样可以将每个节点保持在反馈控制电压下,并同时测量每个电流。如果您没有足够的 SMU 通道来覆盖每个器件通道连接,可以按照第二个配置所示进行操作。应当注意,该配置更容易受到高噪声接地连接的影响,如果使用长电缆,可能会产生接地环路。此外,无法测量源极端子的电流和电压,这可能导致计算错误。

测量跨导

  1. 在所需范围内扫描栅极电压 (VGS),同时保持恒定的漏/源电压 (VDS)
  2. 以 VGS 的每个增量步长测量漏极电流 (ID)。
  3. 将电流 ID 的微小变化除以 VGS 的微小变化,即可计算出跨导 (gm)。

此处所示的红色图线显示了跨导 (gm) 和最大跨导值 (Vth)。

请了解有关安全、精确和快速测试 MOSFET 器件特性的更多信息。

如何在曲线追踪仪上测试 MOSFET 的零栅压漏电流?

答案:零栅压漏电流 - IDSS

什么是零栅压漏电流? 

零栅压漏电流是 VGS=0 时流过的 ID 电流。 在 MOSFET 耗尽模式下,零栅压漏电流为通态电流;在 MOSFET 增强模式下,为断态电流。

IV 曲线追踪仪上,集电极电源驱动漏极,栅极对源极短路,因此 VGS=0。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。 当 VGS=0 并应用指定的 VDS 时,如果 ID 小于或等于指定的最大值,则符合技术规格。

操作方法:

1. 设置控件:

            A:最大峰值电压(伏),设置为高于指定 VDS 的最低值

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:水平电压/格,显示第 5 和第 10 个水平格之间的 VDS

            D:垂直电流/格,显示第 5 和第 10 个垂直格之间的 ID

            E:集电极电源极性,设置为 (+DC)(对于 N 沟道)或 (-DC)(对于 P 沟道)

            F:配置为(基极/短路,发射极/共用)

            G:可变集电极电源,设置为最低百分比(完整 ccw)

            H:DotCursor,设置为 ON

2. 为 MOSFET 供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 VDS

3. 与数据表技术规格进行比较:

            检查在指定的 VDS 下,ID 是否小于或等于指定的最大值

如何在曲线追踪仪上测试 MOSFET 的栅极阈值电压?

回答:栅极阈值电压 - VGS(th)

什么是栅极阈值电压? 

栅极阈值电压是指定少量 ID 流过时的最低 VGS。在 VGS = VDS 的条件下进行测试。

在曲线追踪仪上,集电极电源提供 VDS。 使用跳接线将栅极与漏极短路,使 VGS = VDS。

显示屏显示的内容:

在横轴上显示 VGS,在纵轴上显示得出的 ID。 在指定的 ID 下,当 VGS 在最小/最大限值范围内时,则符合技术规格。

操作方法:

1. 设置控件:

            A:最大峰值电压(伏),设置为高于指定 VGS 的最低值

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:水平电压/格,显示第 5 和第 10 个水平格之间的 VGS

            D:垂直电流/格,显示第 5 和第 10 个垂直格之间的指定 ID

            E:集电极电源极性,设置为 (+DC)(对于 N 沟道)或 (-DC)(对于 P 沟道)

            F:配置,设置为(基极/开路,发射极/共用)

            G:可变集电极电源,设置为最低百分比(完整 ccw)

            H:DotCursor,设置为 ON

2:连接跳线:

            A:在接口区未使用一侧的基极和集电极端子之间连接跳线

            B:在夹具区未使用一侧的基极感应和集电极感应端子之间连接第二根跳线

3. 为 MOSFET 供电:

            A:将左/右开关定位在两个位置

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 ID 或最大阈值电压(以先到者为准)

4. 与数据表技术规格进行比较:

            检查栅极阈值电压是否在规定的最小/最大限值范围内

如何在曲线追踪仪上测试 MOSFET 的跨导 (gFS) 和正向导纳?

回答:跨导 (gFS) 和正向导纳

什么是跨导和正向导纳? 

跨导是 ID 与 VGS 的比值。 I/V 比通常称为增益。

在曲线追踪仪上,由集电极电源驱动漏极,由阶梯信号发生器驱动栅极。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。 在阶梯信号发生器提供栅极驱动的情况下,由于栅极驱动产生比例 ID,因此曲线将从横轴向上移动。在指定的 VGS 或指定的 ID 下,ID 与 VGS 之比等于或大于指定的最小值时,即满足技术规格。

操作方法:

1. 设置控件:

            A:最大峰值电压(伏),设置为高于指定 VDS 的最低值

            B:峰值功率(瓦),设置为满足 (ID x VDS) 的最低设置

            C:集电极电源极性,对于 N 沟道设置为 (+DC) 或对于 P 沟道设置为 (-DC)

            D:水平电压/格,显示第 5 和第 10 个水平格之间的指定 VDS

            E:垂直电流/格,显示第 5 和第 10 个垂直格之间的指定 ID

            F:步数,设置为最小值(零)

            G:阶梯信号发生器,设置为电压

            H:阶梯信号发生器极性,施加正向偏移(对于 N 沟道,为 +,对于 P 沟道,为 -)

            I:阶梯/偏移放大,设置为指定 VDS 的 1% 左右

            J:脉冲,设置为“长”       

            K:配置为(基极/阶梯信号发生器,发射极/共用)

            L:可变集电极电源,设置至最低百分比(完整 ccw)

            M:DotCursor,设置为 ON

2. 为 MOSFET 供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 VDS

3. 根据参数调整:

            按住“偏移辅助”,直到曲线出现明显的垂直位移。  有必要重新调整可变集电极 % 以保持 VDS。 继续交替调整步长偏移和 VDS,直至达到指定的工作点。

4. 计算跨导 (gFS):

             直接从光标读数中读取 gFS

5. 与数据表技术规格进行比较:

              检查值是否等于或大于指定的最小值

正向导纳是表示跨导的另一种方法,其测量方法是将曲线追踪仪设置为测量跨导(如上所述),将水平电压(伏/格)切换到 STEP GEN,使用 SWEEP 完成曲线,然后将光标切换到 F 线,并定位 F 线的斜率,直到它与曲线相切。

如何在曲线追踪仪上测试 MOSFET 的通态漏极电流?

回答:通态漏极电流 - ID(on)

什么是通态漏极电流?

通态漏极电流是通过指定的 VGS 使器件偏移到导通状态的 ID。 测量过程在器件的欧姆区(即线性区)进行。

在曲线追踪仪上,由集电极电源驱动漏极,由阶梯信号发生器驱动栅极。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。 在指定的 VDS 下,ID 大于或等于指定的最小值时,即符合技术规格。

操作方法:

1. 设置控件:

            A:最大峰值电压(伏),设置为高于指定 VDS 的最低值

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:I:集电极电源极性,对于 N 沟道,设置为 (+DC) 或对于 P 沟道,设置为 (-DC)  

            D:水平电压/格,显示第 5 和第 10 个水平格之间的 VDS

            E:垂直电流/格,显示第 5 和第 10 个垂直格之间的 ID

            F:步数,设置为最小值(零)

            G:阶梯信号发生器,设置为电压

            H:阶梯信号发生器极性,施加正向偏移(对于 N 沟道,为 +,对于 P 沟道,为 -)

            I:阶梯/偏移放大,设置为指定 VGS 的 50% 左右

            J:脉冲,设置为“长”       

            K:配置为(基极/阶梯信号发生器,发射极/共用)

            L:可变集电极电源,设置至最低百分比(完整 ccw)

            M:DotCursor,设置为 ON

2. 为器件供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 VDS

3. 与数据表技术规格进行比较:

            A:检查 ID 是否等于或大于指定的最小值

如何在曲线追踪仪上测试 MOSFET 的漏源击穿电压?

答回:漏源击穿电压 - V(br)DSS

什么是漏源击穿电压?

漏源击穿电压是指在 VG = 0 时,指定 ID 流过时的 VDS。 由于它是通过夹断沟道的反向电流,ID 呈膝形上升,一旦发生击穿就会迅速上升。

在曲线追踪仪上,集电极电源驱动漏极,栅极对源极短路,因此 VGS=0。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。 在指定的 ID 下,VDS 大于或等于指定的最小值时,即符合技术规格。

操作方法:

1. 设置控件:

A:最大峰值电压(伏),设置为高于指定最小值的最低设置

     VDS

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:水平电压/格,显示第 5 和第 10 个水平格之间的 VDS

            D:垂直电流/格,显示第 5 和第 10 个垂直格之间的 ID                  

            E:集电极电源极性,设置为 + 泄漏(对于 N 沟道)或 - 泄漏(对于 P 沟道)

            F:配置为(基极/短路,发射极/共用)

            G:可变集电极电源,设置为最低百分比(完整 ccw)

            H:DotCursor,设置为 ON

2. 为 MOSFET 供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 ID

3. 与数据表技术规格进行比较:

            检查在指定的 ID 下,VDS 是否大于或等于指定的最小值

如何在曲线追踪仪上测试 MOSFET 的正向栅极主体漏电流?

答案:零栅压漏电流 - IDSS

什么是零栅压漏电流?

零栅压漏电流是 VGS=0 时流过的 ID 电流。 在 MOSFET 耗尽模式下,零栅压漏电流为通态电流;在 MOSFET 增强模式下,为断态电流。

在曲线追踪仪上,集电极电源驱动漏极,栅极对源极短路,因此 VGS=0。

显示屏显示的内容:

显示屏在横轴上显示 VDS,在纵轴上显示得出的 ID。 当 VGS=0 并应用指定的 VDS 时,如果 ID 小于或等于指定的最大值,则符合技术规格。

操作方法:

1. 设置控件:

            A:最大峰值电压(伏),设置为高于指定 VDS 的最低值

            B:最大峰值功率(瓦),设置为满足 (ID x VDS) 的最低值

            C:水平电压/格,显示第 5 和第 10 个水平格之间的 VDS

            D:垂直电流/格,显示第 5 和第 10 个垂直格之间的 ID

            E:集电极电源极性,设置为 (+DC)(对于 N 沟道)或 (-DC)(对于 P 沟道)

            F:配置为(基极/短路,发射极/共用)

            G:可变集电极电源,设置为最低百分比(完整 ccw)

            H:DotCursor,设置为 ON

2. 为 MOSFET 供电:

            A:根据情况定位左/右开关

            B:缓慢增加可变集电极电源的百分比,直至达到指定的 VDS

3. 与数据表技术规格进行比较:

            检查在指定的 VDS 下,ID 是否小于或等于指定的最大值