联系我们
与泰克代表实时聊天。 工作时间:上午 9:00 - 下午 5:00(太平洋标准时间)。
致电我们
工作时间:上午9:00-下午5:00(太平洋标准时间)
下载
下载手册、产品技术资料、软件等:
反馈
此产品已经停止销售,请与我们联系获得更多帮助。
Specifications
All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.
Model overview
MSO3012 and DPO3012 | MSO3014 and DPO3014 | MSO3032 and DPO3032 | MSO3034 and DPO3034 | DPO3052 | MSO3054 and DPO3054 | |
---|---|---|---|---|---|---|
Analog channels | 2 | 4 | 2 | 4 | 2 | 4 |
Analog bandwidth (-3dB) | 100 MHz | 100 MHz | 300 MHz | 300 MHz | 500 MHz | 500 MHz |
Calculated rise time at 5 mv/div, typical | 3.5 ns | 3.5 ns | 1.17 ns | 1.17 ns | 700 ps | 700 ps |
Sample rate (analog channels) | 2.5 GS/s | 2.5 GS/s | 2.5 GS/s | 2.5 GS/s | 2.5 GS/s | 2.5 GS/s |
Record length | 5 M points | 5 M points | 5 M points | 5 M points | 5 M points | 5 M points |
Digital channels | MSO models add 16 digital channels to the corresponding DPO model |
Vertical system analog channels
- Hardware bandwidth limits
-
- ≥300 MHz models
- 20 MHz and 150 MHz
- 100 MHz models
- 20 MHz
- Input impedance
- 1 MΩ ±1%, 75 Ω ± 1%, 50 Ω ±1%
- Input sensitivity range
-
- 1 MΩ
- 1 mV/div to 10 V/div
- 75 Ω, 50 Ω
- 1 mV/div to 1 V/div
- Vertical resolution
- 8 bits (11 bits with Hi Res)
- Maximum input voltage
-
- 1 MΩ
- 300 VRMS with peaks ≤ ±450 V
- 75 Ω, 50 Ω
- 5 VRMS with peaks ≤ ±20 V
- DC gain accuracy
-
±1.5% for 5 mV/div and above
±2.0% for 2 mV/div
±2.5% for 1 mV/div
- Channel-to-channel isolation
- Any two channels at equal vertical scale
Vertical system digital channels
- Thresholds
- Threshold per set of 8 channels
- Threshold selections
- TTL, CMOS, ECL, PECL, User-defined
- User-defined threshold range
- –15 V to +25 V
- Maximum input voltage
- –20 V to +30 V
- Threshold accuracy
- ±[100 mV + 3% of threshold setting]
- Maximum input dynamic range
- 50 Vp-p (threshold setting dependent)
- Minimum voltage swing
- 500 mVp-p
- Input resistance
- 101 kΩ
- Probe loading
- 8 pF
- Vertical resolution
- 1 bit
Horizontal system analog channels
- Maximum duration of time captured at highest sample rate (all channels)
- 2 ms
- Seconds/division range
- 1 ns/div to 1000 s/div
- Time-base delay time range
- -10 divisions to 5000 s
- Channel-to-channel deskew range
- ±100 ns
- Time base accuracy
- ±10 ppm over any ≥1 ms interval
Horizontal system digital channels
- Seconds/division range
- 1 ns/div to 1000 s/div
- Maximum record length (main, all channels)
- 5 M points
- Maximum sample rate (MagniVu, all channels)
- 8.25 GS/s (121.2 ps resolution)
- Maximum record length (MagniVu, all channels)
- 10 k points centered on the trigger
- Minimum detectible pulse width
- 2.0 ns
- Channel-to-channel skew
- 500 ps, typical, digital channel to digital channel only
Trigger system
- Trigger modes
- Auto, Normal, and Single
- Trigger coupling
- DC, AC, HF reject (attenuates >50 kHz), LF reject (attenuates <50 kHz), noise reject (reduces sensitivity)
- Trigger holdoff range
- 20 ns to 8 s
- Trigger sensitivity, typical
-
Edge type, DC coupled
Trigger Source Sensitivity Any input channel 0.50 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth Aux input (external trigger) 200 mV from DC to 50 MHz, increasing to 500 mV at 250 MHz Line Fixed
- Trigger level ranges
-
- Any input channel
- ±8 divisions from center of screen, ±8 divisions from 0 V when vertical LF reject trigger coupling is selected
- Aux Input (external trigger)
- ±8 V
- Line
- The line trigger level is fixed at about 50% of the line voltage.
- Trigger types
-
- Edge
- Positive, negative, or either slope on any channel or front-panel auxiliary input. Coupling includes DC, AC, HF reject, LF reject, and noise reject.
- Sequence (B-trigger)
- Trigger Delay by Time: 8 ns to 8 s. Or Trigger Delay by Events: 1 to 9,999,999 events.
- Pulse Width
- Trigger on width of positive or negative pulses that are >, <, =, ≠, or inside/outside a specified period of time.
- Timeout
- Trigger on an event which remains high, low, or either, for a specified time period (4 ns to 8 s).
- Runt
- Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again.
- Logic
- Trigger when any logical pattern of channels goes false or stays true for specified period of time. Any input can be used as a clock to look for the pattern on a clock edge. Pattern (AND, OR, NAND, NOR) specified for all input channels defined as High, Low, or Don’t Care.
- Setup and Hold
- Trigger on violations of both setup time and hold time between clock and data present on any of the analog and digital input channels.
- Rise/Fall Time
- Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either.
- Video
- Trigger on all lines, odd, even, or all fields on NTSC, PAL, and SECAM video signals.
- Extended Video (optional)
- Trigger on 480p/60, 576p/50, 720p/30, 720p/50, 720p/60, 875i/60, 1080i/50, 1080i/60, 1080p/24, 1080p/24sF, 1080p/25, 1080p/30, 1080p/50, 1080p/60, and custom bi-level and tri-level sync video standards.
- I2C (optional)
- Trigger on Start, Repeated Start, Stop, Missing ACK, Address (7 or 10 bit), Data, or Address and Data on I2C buses up to 10 Mb/s.
- SPI (optional)
- Trigger on SS, MOSI, MISO, or MOSI and MISO on SPI buses up to 10.0 Mb/s.
- RS-232/422/485/UART (optional)
- Trigger on Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet, Tx Data, Rx Data, Tx Parity Error, and Rx Parity Error up to 10 Mb/s.
- CAN (optional)
- Trigger on Start of Frame, Frame Type (data, remote, error, overload), Identifier (standard or extended), Data, Identifier and Data, End of Frame, Missing ACK, or Bit Stuffing Error on CAN signals up to 1 Mb/s. Data can be further specified to trigger on ≤, <, =, >, ≥, or ≠ a specific data value. User-adjustable sample point is set to 50% by default.
- LIN (optional)
- Trigger on Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame, Errors such as Sync, Parity, or Checksum Errors up to 100 kb/s (by LIN definition, 20 kb/s).
- FlexRay (optional)
- Trigger on Start of Frame, Type of Frame (Normal, Payload, Null, Sync, Startup), Identifier, Cycle Count, Complete Header Field, Data, Identifier and Data, End of Frame or Errors such as Header CRC, Trailer CRC, Null Frame, Sync Frame, or Startup Frame Errors up to 100 Mb/s.
- MIL-STD-1553 (optional)
- Trigger on Sync, Word Type 1 (Command, Status, Data), Command Word (set RT Address, T/R, Sub-address/Mode, Data Word Count/Mode Code, and Parity individually), Status Word (set RT Address, Message Error, Instrumentation, Service Request Bit, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance (DBCA), Terminal Flag, and Parity individually), Data Word (user-specified 16-bit data value), Error (Sync, Parity, Manchester, Non-contiguous data), Idle Time (minimum time selectable from 2 µs to 100 µs; maximum time selectable from 2 µs to 100 µs; trigger on < minimum, > maximum, inside range, outside range). RT Address can be further specified to trigger on =, ≠, <, >, ≤, ≥ a particular value, or inside or outside of a range.
- I2S/LJ/RJ/TDM (optional)
- Trigger on Word Select, Frame Sync, or Data. Data can be further specified to trigger on ≤, <, =, >, ≥, ≠ a specific data value, or inside or outside of a range.
- Parallel (available on MSO models only)
- Trigger on a parallel bus data value. Parallel bus can be from 1 to 16 bits (from the digital channels) plus 2 or 4 bits (from the analog channels) in size. Binary and Hex radices are supported.
1 Trigger selection of Command Word will trigger on Command and ambiguous Command/Status words. Trigger selection of Status Word will trigger on Status and ambiguous Command/Status words.
Acquisition system
- Acquisition Modes
-
- Sample
- Acquire sampled values.
- Peak Detect
- Captures glitches as narrow as 2 ns at all sweep speeds.
- Averaging
- From 2 to 512 waveforms included in average.
- Envelope
- Min-max envelope reflecting Peak Detect data over multiple acquisitions.
- Hi Res
- Real-time boxcar averaging reduces random noise and increases vertical resolution.
- Roll
- Scrolls waveforms right to left across the screen at sweep speeds slower than or equal to 40 ms/div.
- FastAcq®
- FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events, capturing >340,000 wfms/s on 1 GHz models and >270,000 wfms/s on 100 MHz - 500 MHz models.
Waveform measurements
- Cursors
- Waveform and Screen.
- Automatic measurements
- 29, of which up to four can be displayed on-screen at any one time. Measurements include: Period, Frequency, Delay, Rise Time, Fall Time, Positive Duty Cycle, Negative Duty Cycle, Positive Pulse Width, Negative Pulse Width, Burst Width, Phase, Positive Overshoot, Negative Overshoot, Peak to Peak, Amplitude, High, Low, Max, Min, Mean, Cycle Mean, RMS, Cycle RMS, Positive Pulse Count, Negative Pulse Count, Rising Edge Count, Falling Edge Count, Area and Cycle Area.
- Measurement statistics
- Mean, Min, Max, Standard Deviation.
- Reference levels
- User-definable reference levels for automatic measurements can be specified in either percent or units.
- Gating
- Isolate the specific occurrence within an acquisition to take measurements on, using either the screen, or waveform cursors.
Power measurements (optional)
- Power Quality Measurements
- VRMS, VCrest Factor, Frequency, IRMS, ICrest Factor, True Power, Apparent Power, Reactive Power, Power Factor, Phase Angle.
- Switching loss measurements
-
- Power loss
- Ton, Toff, Conduction, Total.
- Energy loss
- Ton, Toff, Conduction, Total.
- Harmonics
- THD-F, THD-R, RMS measurements. Graphical and table displays of harmonics. Test to IEC61000-3-2 Class A and MIL-STD-1399, Section 300A.
- Ripple measurements
- VRipple and IRipple.
- Modulation Analysis
- Graphical display of +Pulse Width, –Pulse Width, Period, Frequency, +Duty Cycle, and –Duty Cycle modulation types.
- Safe operating area
- Graphical display and mask testing of switching device safe operating area measurements.
- dV/dt and dI/dt measurements
- Cursor measurements of slew rate.
Waveform math
- Arithmetic
- Add, subtract, multiply, and divide waveforms.
- Math functions
- Integrate, Differentiate, FFT.
- FFT
- Spectral magnitude. Set FFT Vertical Scale to Linear RMS or dBV RMS, and FFT Window to Rectangular, Hamming, Hanning, or Blackman-Harris.
- Advanced math
- Define extensive algebraic expressions including waveforms, reference waveforms, math functions (FFT, Intg, Diff, Log, Exp, Sqrt, Sine, Cosine, Tangent), scalars, up to two user-adjustable variables and results of parametric measurements (Period, Freq, Delay, Rise, Fall, PosWidth, NegWidth, BurstWidth, Phase, PosDutyCycle, NegDutyCycle, PosOverShoot, NegOverShoot, PeakPeak, Amplitude, RMS, CycleRMS, High, Low, Max, Min, Mean, CycleMean, Area, CycleArea, and trend plots), e.g.,(Intg(Ch1 - Mean(Ch1)) × 1.414 × VAR1).
Software
- NI LabVIEW SignalExpress™ Tektronix Edition
-
A fully interactive measurement software environment optimized for your Tektronix oscilloscope, enables you to instantly acquire, generate, analyze, compare, import, and save measurement data and signals using an intuitive drag-and-drop user interface that does not require any programming.
Standard support for acquiring, controlling, viewing, and exporting your live analog-channel signal data is permanently available through the software. The full version (SIGEXPTE) adds additional signal processing, advanced analysis, mixed signal, sweeping, limit testing, and user-defined step capabilities and is available for a 30-day trial period standard with each instrument.
- OpenChoice® Desktop
- Enables fast and easy communication between a Windows PC and your oscilloscope using USB or LAN. Transfer and save settings, waveforms, measurements, and screen images. Included Word and Excel toolbars automate the transfer of acquisition data and screen images from the oscilloscope into Word and Excel for quick reporting or further analysis.
- IVI driver
- Provides a standard instrument programming interface for common applications such as LabVIEW, LabWindows/CVI, Microsoft .NET, and MATLAB.
- e*Scope® Web-based remote control
- Enables control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser.
Display system
- Display type
- 9 inch (228.6 mm) wide format liquid crystal TFT color display.
- Display resolution
- 800 horizontal × 480 vertical pixels (WVGA).
- Waveform styles
- Vectors, Dots, Variable Persistence, Infinite Persistence.
- Graticules
- Full, Grid, Cross Hair, Frame, IRE and mV.
- Format
- YT and XY.
- Maximum waveform capture rate
-
>340,000 wfms/s in FastAcq acquisition mode on 1 GHz models
>270,000 wfms/s in FastAcq acquisition mode on 100 MHz - 500 MHz models
>50,000 wfms/s in DPO acquisition mode on all models.
Input/output ports
- USB 2.0 high-speed host port
- Supports USB mass storage devices, printers, and keyboards. One port available on rear panel and one on front panel.
- USB 2.0 high-speed device port
- Rear-panel connector allows for communication/control of oscilloscope through USBTMC or GPIB with a TEK-USB-488, and direct printing to all PictBridge®-compatible printers.
- LAN port (Ethernet)
- RJ-45 connector, supports 10/100BASE-T.
- GPIB interface
- Available as an optional accessory that connects to the USB Device and USB Host port with the TEK-USB-488 GPIB to USB Adapter.
- Video out port
- DB-15 female connector, connect to show the oscilloscope display on an external monitor or projector. SVGA resolution.
- Auxiliary input
- Front-panel BNC connector. Input Impedance 1 MΩ. Max input 300 VRMS CAT II with peaks ≤ ±425 V.
- Probe compensator output voltage and frequency
- Front-panel pins
- Amplitude
- 0 to 2.5 V
- Frequency
- 1 kHz
- Trigger out
- Rear-panel BNC connector, provides a negative-polarity pulse when the oscilloscope triggers.
- Kensington-style lock
- Rear-panel security slot connects to standard Kensington-style lock.
Power source
- Power source voltage
- 85 to 265 V ±10%
- Power source frequency
- 45 to 440 Hz (85 to 265 V)
- Power consumption
- 120 W maximum
- Optional TekVPI® external power supply 1
-
- Output voltage
- 12 V
- Output current
- 5 A
- Power consumption
- 50 W
1 Required when total oscilloscope probe power usage exceeds 20 W.
Physical characteristics
- Dimensions
-
mm in. Height 203.2 8 Width 416.6 16.4 Depth 147.3 5.8
- Weight
-
kg lb. Net 4.17 9.2 Shipping 8.62 19
- Rackmount configuration
- 5U
- Cooling clearance
- 2 in. (51 mm) required on left side and rear of instrument
EMC, environment, and safety
- Temperature
-
- Operating
- 0 ºC to +50 ºC (+32 ºF to 122 ºF)
- Nonoperating
- -40 ºC to +71 ºC (-40 ºF to 160 ºF)
- Humidity
-
- Operating
- High: 30 ºC to 50 ºC, 5% to 45% relative humidity
- Nonoperating
- High: 30 ºC to 50 ºC, 5%to 45% relative humidity
- Altitude
-
- Operating
- 3,000 meters (9,843 feet)
- Nonoperating
- 12,000 meters (39,370 feet)
- Random vibration
-
- Operating
- 0.31 GRMS from 5 to 500 Hz, 10 minutes each axis, 3 axes, 30 minutes total
- Nonoperating
- 2.46 GRMS from 5 to 500 Hz, 10 minutes each axis, 3 axes, 30 minutes total
- Regulatory
-
- Electromagnetic compatibility
- EC Council Directive 2004/108/EC
- Safety
- UL61010-1:2004, CAN/CSA-C22.2 No. 61010.1: 2004, Low Voltage Directive 2006/95/EC and EN61010-1:2001, IEC 61010-1:2001, ANSI 61010-1-2004, ISA 82.02.01